технология бетона реферат

Заказать бетон в Москве

Бетонная смесь - грубодисперсная гетерогенная система, получаемая при затворении водой смеси цемента гранж бетон заполнителей. При необходимости в бетонную смесь могут быть введены тонкодисперсные минеральные и химические добавки. Бетонные смеси можно отнести к структурированным вязким жидкостям. Наиболее существенными особенностями бетонных смесей являются способности разжижаться под влиянием механических воздействий и изменять свои свойства во времени по мере превращения в искусственный камень-бетон.

Технология бетона реферат новые добавки в бетонные смеси

Технология бетона реферат

Заполнители значительно уменьшают деформации бетона при твердении и тем самым обеспечивают получение большеразмерных изделий и конструкций. В качестве заполнителей используют преимущественно местные горные породы и отходы производства шлаки и др.

Применение этих дешевых заполнителей снижает стоимость бетона, так как заполнители и вода составляют Для снижения плотности бетона и улучшения его теплотехнических свойств используют искусственные и природные пористые заполнители. Для регулирования свойств бетона и бетонной смеси в их состав вводят различные химические добавки и активные минеральные компоненты, которые ускоряют или замедляют схватывание бетонной смеси, делают ее более пластичной и удобоукладываемой, ускоряют твердение бетона, повышают его прочность и морозостойкость, регулируют собственные деформации бетона, возникающие при его твердении, а также при необходимости изменяют и другие свойства бетона.

С увеличением возраста бетона повышаются его прочность, плотность, стойкость к воздействию окружающей среды. Свойства бетона определяются не только его составом и качеством исходных материалов, но и технологией приготовления и укладки бетонной смеси в конструкцию, условиями твердения бетона.

Все эти факторы учитывают при проектировании состава бетона и производстве конструкций на его основе. На органических вяжущих веществах битум, синтетические смолы и т. Многообразие вяжущих веществ, заполнителей, добавок активных минеральных компонентов и технологических приемов позволяет получать бетоны с самыми разнообразными свойствами. Бетон является хрупким материалом: его прочность при сжатии в несколько раз выше прочности при растяжении.

Для восприятия растягивающих напряжений бетон армируют стальными стержнями, получая железобетон. В железобетоне арматуру располагают так, чтобы она воспринимала растягивающие напряжения, а сжимающие напряжения передавались на бетон. Совместная работа арматуры и бетона обусловливается хорошим сцеплением между ними и приблизительно одинаковыми температурными коэффициентами линейного расширения.

Бетон предохраняет арматуру от коррозии. Марка тяжелого бетона по прочности на сжатие может достигать от М 50 до М , а класс бетона от В 3,5 до В Бетонные и железобетонные конструкции изготовляют либо непосредственно на месте строительства - монолитный бетон и железобетон, либо на заводах и полигонах с последующим монтажом на строительной площадке - сборный бетон и железобетон.

Применяются следующие виды цемента [3, 4]: портландцемент ПЦ; портландцемент быстродействующий БПЦ; портландцемент с минеральными и пластифицирующими добавками [5]; шлакопортландцемент с добавками доменного граншлака в количестве Введение в бетон заполнителей позволяет резко сократить расход цемента, являющегося наиболее дорогим компонентом. Кроме того, заполнители улучшают технические свойства бетона. Заполнители создают в бетоне жесткий скелет и примерно в 10 раз, по сравнению с цементным тестом уменьшает усадку бетона.

Жесткий скелет из высокопрочного заполнителя несколько увеличивает прочность и модуль деформации бетона, уменьшает деформации конструкций под нагрузкой, а также ползучесть бетона - необратимые деформации, возникающие при длительном действии нагрузки. Заполнители создают в бетоне жесткий скелет и примерно в 10 раз по сравнению с цементным тестом уменьшает усадку бетона, способствуя получению более долговечного материала.

Пористые естественные и искусственные заполнители, обладая малой плотностью, уменьшают плотность легкого бетона, улучшают его теплотехнические свойства. В специальных бетонах жаростойких, для защиты от радиации и др. В бетоне применяют крупный [7, 8] и мелкий заполнитель [9, 10].

Крупный заполнитель более 5 мм подразделяют на гравий и щебень. Мелким заполнителем в бетоне является естественный или искусственный песок. Заполнители для бетонов бывают различных видов, природные или искусственные: песок, щебень, гравий. Их свойства регламентируются соответствующими ГОСТами, техническими условиями, другими нормативными документами. Щебень гранитный должен соответствовать требованиям ГОСТ "Щебень и гравий из плотных горных пород для строительных работ.

Технические условия". В качестве мелкого заполнителя применяется кварцевый песок, удовлетворяющий требованиям ГОСТ "Песок для строительных работ. Различают рядовой заполнитель, содержащий зерна различных размеров, и фракционированный, когда зерна заполнителя разделены на отдельные фракции, включающие зерна близких между собой размеров, например Заполнитель характеризуется наименьшей и наибольшей крупностью, под которыми понимают размеры наименьших или наиболее крупных зерен заполнителя.

Источником для приготовления бетонной смеси является обычная питьевая вода. Для улучшения физико-механических свойств бетонов и растворов, а также по технико-экономическим соображениям широко применяют различные добавки к вяжущим. Вводят их в бетономешалку в виде сухих порошков или водных суспензий и растворов. В зависимости от назначения добавки делят на активные, минеральные, добавки-наполнители, поверхностно-активные, пено- и газообразователи, ускорители твердения и замедлители схватывания, противоморозные.

Одним из важнейших направлений, совершенствования технологии бетона и железобетона являются применение химических добавок, обеспечивающих сокращение расхода цемента, энерго и трудоемкости технологических процессов.

Проектирование подбора состава тяжелого бетона Все расчеты выполняются в соответствии с методическими рекомендациями [11]. Цель работы - установить рациональный расход материалов на 1м3 бетонной смеси при котором наиболее экономично обеспечивается получение удобоукладываемой бетонной смеси и заданной прочности бетона, а в ряде случаев необходимой морозостойкости, водонепроницаемости и специальных свойств бетона.

При правильно подобранном составе цементное тесто занимает Подбор состава бетона предусматривает получение заданных свойств бетона при минимальных затратах сырьевых ресурсов. Наиболее распространенный метод расчета состава бетона для обычных тяжелых бетонов - расчет по методу абсолютных объемов, предложенный Б. Он производится по проектируемому классу марке бетона прочности при сжатии и удобоукладываемости подвижности или жесткости бетонной смеси.

Кроме того, для конкретных материалов, используемых при производстве бетонных работ, необходимо знать вид, активность, объемный и удельный вес цемента, гранулометрический состав крупного и мелкого заполнителей и их объемный и удельный вес. Корректировка состава бетона с пластифицирующей добавкой при применении ее для повышения, подвижности смеси заключается в установлении оптимального количества добавки и доли песка в смеси заполнителей для тяжелого бетона.

Корректировку состава бетона с комплексными добавками [14] рекомендуется производить в последовательности входящих в нее компонентов в соответствии с составами добавок, приведенными в табл. Для регулирования свойств бетона, бетонной смеси и экономии цемента применяют различные добавки. Их подразделяют на два вида: химические добавки, вводимые в бетон в небольшом количестве 0, Применение химических добавок является одним из наиболее универсальных, доступных и гибких способов управления технологией бетона и регулирования его свойств.

В данной работе используется добавка ЩСПК. Для того чтобы понять, как она работает, нужно рассмотреть ее свойства и принципы работы. Смесительный барабан автобетоносмесителя загружают на заводе исходными материалами, а бетонная смесь приготовляется в пути в непосредственной близости от места укладки бетона.

Укладка бетонной смеси. Качество бетонных и железобетонных конструкций в значительной мере зависит от способа укладки и уплотнения бетонных смесей. В заранее подготовленную опалубку форму с установленной в ней арматурой бетонную смесь обычно укладывают горизонтальными слоями. При этом смесь должна плотно заполнять весь объем опалубки или формы, включая углы и суженные места. Для механизации этой довольно трудоемкой операции используют специальные механизмы: бетонораздатчики и бетоноукладчики.

Бетонную смесь, как правило, уплотняют вибрированием, после чего зерна крупного заполнителя укладываются компактно, промежутки между ними заполняются цементным раствором, а пузырьки воздуха вытесняются наружу. При прекращении вибрирования уложенная в опалубку или форму бетонная смесь мгновенно загустевает. Для уплотнения бетонной смеси применяют электромагнитные, пневматические, но чаще всего электромеханические вибраторы. По конструкции различают вибраторы поверхностные, глубинные и площадочные.

Выбирают вибратор в зависимости от вида, формы и размеров бетонируемой конструкции. Конструкции с большими открытыми поверхностями полы, плиты и т. Перемещать поверхностный вибратор с одной позиции на другую рекомендуется так, чтобы он своей площадкой перекрывал на 10 - 20см границу уже провибрированного участка.

При бетонировании массивных конструкций фундаменты, колонны и др. Уплотняют бетонную смесь внутренними вибраторами по слоям, толщина которых не должна превышать 1,25 длины рабочей части вибратора, а шаг перестановки не должен быть выше полуторного радиуса их действия. Продолжительность вибрирования на каждой позиции должна обеспечивать достаточное уплотнение бетонной смеси, основными признаками которого являются прекращение оседания бетонной смеси, появление цементного молока на ее поверхности и прекращение выделения воздушных пузырьков.

В зависимости от степени подвижности бетонной смеси продолжительность вибрирования на одной позиции 20 - 60 с. В случае, когда строительная площадка находится на значительном расстоянии от бетонного завода для перевозки и приготовления бетонной смеси используются автобетоносмесители. Рост прочности бетона возможен только при определенных температурных и влажностных условиях. Твердение бетона значительно ускоряется при повышении температуры среды до 60 - 85оС с обязательным сохранением в бетоне влаги.

Во влажной среде бетон приобретает значительно большую прочность, чем на воздухе. В сухих условиях он быстро теряет влагу, и его дальнейшее твердение прекращается. Для того чтобы уложенный и уплотненный бетон получил требуемую прочность в назначенный срок, за ним необходим правильный уход. Особенно важен уход за бетоном в первые дни после укладки, иначе можно настолько снизить качество бетона, что его нельзя будет исправить даже при последующем тщательном уходе. Свежеуложенный бетон выдерживают во влажном состоянии и предохраняют от сотрясений, ударов, каких-либо повреждений, а также резких изменений температуры.

В летнее время открытые поверхности свежеуложенного бетона следует укрывать мешковиной, рогожей, песком, опилками или другими материалами и периодически увлажнять. Поливать бетон начинают не позднее чем через 10 ч после бетонирования, а в жаркую ветренную погоду через 2-З ч.

Летом бетон обычно поливают в течение первых 3сут не реже чем через каждые 4 ч днем и не менее 1 раза ночью, а в последующее время - не менее 3 раз в сутки. Бетон, приготовленный на портландцементе, следует поливать не менее 7сут. Особенно обильно надо поливать ночью.

Вместо полива водой поверхности бетона можно покрывать битумной эмульсией, лаком этиноль, латексом и другими жидкими материалами, которые образуют непроницаемую пленку, надежно защищающую бетон от испарения влаги. Распалубливать бетонные и железобетонные конструкции следует только после достижения бетоном определенной прочности, устанавливаемой путем испытания контрольных образцов-кубов. Твердение бетона при температурах ниже 5 - 10 о С значительно замедляется, а при температурах ниже нуля практически прекращается.

Находящаяся в бетоне свободная вода, замерзая, увеличивается в объеме, что приводит к нарушению структуры еще не затвердевшего цементного камня, а это, в свою очередь, снижает конечную прочность бетона. Наиболее опасно замерзание бетона в период схватывания цемента. Для предупреждения раннего замерзания бетона и обеспечения твердения его при низких температурах применяются способ "термоса", паро- и электротермообработка бетона, а также применение бетона с химическими добавками - ускорителями твердения.

Каждый способ можно применять самостоятельно или в сочетании. Способ "термоса" применяется при бетонировании массивных конструкций и предусматривает обеспечение в бетоне во время его твердения положительной температуры за счет подогрева до 40оС составляющих бетонной смеси воды, песка, крупного заполнителя и теплоты, выделяемой цементом при твердении. Для сохранения запаса теплоты в течение определенного срока конструкции из свежеуложенного бетона утепляют, покрывая их соломенными матами, опилками, шлаком и др.

При бетонировании в зимнее время немассивных конструкций колонн, балок, перекрытий и т. Химические добавки применяют с целью снизить температуру замерзания воды в бетонной смеси и обеспечить возможность твердения бетона при отрицательной температуре.

В качестве химических добавок вводят хлористый кальций и натрий, нитрит натрия, нитрит-нитрат кальция, мочевину, поташ, а также комплексные химические добавки на основе пластификатора и противоморозного компонента. Качество бетонных работ контролируют на всех этапах производства: испытывают составляющие бетонной смеси, систематически проверяют правильность дозирования, перемешивания и уплотнения бетонной смеси, контролируют твердение бетона, определяют прочность затвердевшего бетона.

Прочность бетона контролируют путем отбора проб бетонной смеси и изготовления из нее контрольных образцов-кубов, которые должны твердеть в тех же условиях, что и бетон монолитных конструкций. Контрольные образцы испытывают в возрасте 7 и 28сут. Разработаны неразрушающие механические и физические методы определения прочности и однородности бетона.

Принцип действия их основан на зависимости величины заглубления в бетон бойка шарика при ударе от прочности испытуемого бетона или на изменении скорости распространения ультразвукового импульса или волн удара в бетон в зависимости от его плотности и прочности. Для выявления внутренних скрытых дефектов структуры бетона трещин, раковин, пустот и т.

Гидротехнический бетон в отличие от обычного тяжелого бетона характеризуется повышенной плотностью, водонепроницаемостью, морозостойкостью, низким тепловыделением, стойкостью против воздействия агрессивных вод. Для придания бетону таких свойств применяют сульфатостойкий и пуццолановый портландцемент, высококачественные заполнители с хорошо подобранным зерновым составом, обеспечивают тщательное приготовление и укладку бетонной смеси, а также правильный уход за твердеющим бетоном.

Дорожный бетон применяют для устройства покрытий на автомагистралях, дорогах промышленных предприятий и городских улицах. В процессе эксплуатации покрытия подвергаются не только воздействию транспортных средств, но и влиянию атмосферных условий многократное увлажнение и высыхание, замораживание и оттаивание , поэтому к дорожному бетону предъявляют повышенные требования по прочности, плотности износо- и морозостойкости.

Декоративные бетоны используются для повышения эстетической выразительности зданий и сооружений. Бетон данного вида получают за счет применения цветных составляющих - белого и цветного цементов, щелочестойких пигментов, заполнителей из цветных горных пород. Декоративный бетон наряду с требованиями к его цвету и внешнему виду должен удовлетворять повышенным требованиям в отношении прочности, плотности и долговечности, так как он является наружным слоем железобетонных изделий и в первую очередь подвергается атмосферным воздействиям, а в ряде случаев и истиранию.

Марка декоративного бетона обычно М, а морозостойкость - МРЗ Жаростойкий бетон способен сохранять свои физико-механические свойства при длительном воздействии высоких температур. Для приготовления жаростойких бетонов в качестве вяжущих используют глиноземистый цемент, портландцемент, шлакопортландцемент и жидкое стекло с добавкой кремнефтористого натрия. Заполнителями и тонкомолотыми компонентами служат металлургические шлаки, бой керамических и огнеупорных материалов, базальт, диабаз, андезит, артикский туф и др.

Жаростойкие бетоны в зависимости от вида исходных материалов имеют марки ММ Применяют их для футеровки промышленных печей, подов вагонеток туннельных печей, фундаментов доменных и мартеновских печей, дымовых труб и др. Особо тяжелые бетоны применяют для защиты обслуживающего персонала атомных электростанций от радиоактивных излучений. Установлено, что наиболее опасные для человеческого организма гамма-лучи и нейтронное излучение эффективно поглощает бетон, который имеет высокую плотность и содержит в своем составе компоненты с большим количеством химически связанной воды.

Особо тяжелые защитные бетоны приготовляют на заполнителях: магнетите, лимоните, барите, металлическом скрапе, чугунной дроби и т. В качестве вяжущих используют портландцементы, шлако-портландцементы и глиноземистые цементы. С целью повысить защитные свойства гидратных бетонов названных так в связи с большим содержанием химически связанной воды в их состав вводят добавки: карбид бора, хлористый литий и др.

Прочность и долговечность особо тяжелых бетонов такие же, как у обычных тяжелых бетонов. Бетонополимеры представляют собой бетоны, поры которых заполнены полимерами в результате специальной обработки. Бетон пропитывают петролатумом, разбавленными смолами, битумом, серой, жидкими мономерами метилметакрилатом или стиролом , полимерами эпоксидными и полиэфирными смолами и различными композициями на их основе.

При этом значительно повышаются механические, физические и химические свойства бетона. Например, прочность бетона при сжатии повышается до МПа, а водонепроницаемоеть, морозостойкость и долговечность увеличиваются в несколько раз. Пропитка полимерами повышает стоимость бетона, поэтому ее осуществляют, когда она экономически оправдана бетонополимерные изделия, работающие в суровых климатических или агрессивных условиях.

Гридгин А. Вскрышные породы КМА в дорожном строительстве. Лесовик В. Строительные материалы из отходов горнорудного производства Курской магнитной аномалии: Учебное пособие. Ицкович С. Технология заполнителей бетона. Бруссер М. Исследование структурной пористости бетонов и факторов, ее определяющих.

Технико-экономические преимущества бетона и железобетона. Основные недостатки бетона как строительного материала. Виды добавок для бетонов. Материалы, необходимые для приготовления тяжелого бетона. Реологические и технические свойства бетонной смеси. Подбор номинального состава бетона. Определение расхода крупного заполнителя, цемента, воды, песка. Коэффициент раздвижки зёрен для пластичных бетонных смесей. Подбор производственного состава бетона и расчёт материалов на замес бетоносмесителя.

Назначение, область применения, классификация бетона. Технология изготовления получения бетона. Технологические факторы, влияющие на свойства бетонной смеси. Выбор номенклатуры показателя качества бетона. Факторы, влияющие на снижение качества бетона. Материалы для производства жаростойких бетонов. Требования к материалам для изготовления жаростойких бетонов. Виды заполнителей для жаростойких бетонов, нормативные документы и рекомендуемая область применения. Расчет состава жаростойкого бетона.

Физико-химические свойства бетона: удобоукладываемость, водопотребностъ заполнителя, ползучесть, морозостойкость и теплопроводность. Основные типы напорных труб. Требования к материалам. Подбор состава бетона. Расчет и проектирование складов заполнителей. Номенклатура изделий на основе проектируемого бетона. Исходные материалы для бетона и их характеристика. Структура бетона и физико-химические процессы, происходящие при ее формировании. Расчет состава керамзитобетона поризованной и плотной структуры.

Классификация, разновидности и составляющие материалы асфальтовых бетонов. Технология производства асфальтового бетона. Анализ вредных и опасных производственных факторов. Требования безопасности и расчет параметров производственного оборудования. Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т. Рекомендуем скачать работу. Главная Коллекция "Otherreferats" Производство и технологии Производство и технология бетона.

Заполнитель для обыкновенных и тяжёлых бетонов. Классификация, физико-технические свойства и области применения бетона. Материалы для тяжёлого бетона, подбор их состава. Приготовление, транспортирование и укладка смеси, твердение и уход за бетоном. Заполнители для приготовления тяжелых бетонов 2. Классификация и области применения бетона 3. Заполнитель для обыкновенных тяжёлых бетонов 4.

Физико-технические свойства бетона 5. Классификация бетонов 6. Материалы для тяжелого бетона 7. Основные свойства бетона 8. Подбор состава бетона 9. Приготовление, транспортирование и укладка бетонной смеси Твердение бетона и уход за ним Контроль качества бетона Заполнители для приготовления тяжелых бетонов Жесткость бетонных смесей - характеристика бетонной смеси, определяемая временем вибрирования в секундах , необходимым для того, чтобы отформованная в виде конуса стандартных размеров бетонная смесь равномерно распределилась по высоте во внутреннем кольце и внешнем цилиндре технического вискозиметра.

Классификация и области применения бетона Бетон классифицируют по виду применяемого вяжущего: - бетон на неорганических вяжущих цементные бетоны, гипсобетоны, силикатные бетоны, кислотоупорные бетоны, жаростойкие бетоны и др. Особо лёгкие бетоны применяют главным образом как теплоизоляционные материалы. Заполнитель для обыкновенных тяжёлых бетонов В качестве мелкого заполнителя в тяжёлых бетонах применяют природные главным образом кварцевые и дроблёные пески с размером зёрен от 0,14 до 5мм.

Физико-технические свойства бетон а Основные свойства бетона - плотность, содержание связанной воды для особо тяжёлых бетонов , прочность при сжатии и растяжении, морозостойкость, теплопроводность и техническая вязкость жёсткость смеси. Классификация бетонов По плотности бетоны подразделяют на: 1. По виду применяемого вяжущего вещества бетоны разделяют на: 1. В зависимости от структуры бетоны разделяют на: 1. По назначению бетоны подразделяют на: 1. Материалы для тяжелого бетона Цемент.

Для тяжелых бетонов рекомендуются следующие марки цементов: Марка бетона М М М МЗОО М М М Марка цемента В случаях, когда марка цемента выше той, которая рекомендуется для данного бетона, следует применять микронаполнители - измельченные горные породы известняки, доломиты и др. Крупный заполнитель для тяжелого бетона это гравии или щебень. Основные свойства бетона Прочность при сжатии является основным показателем механических свойств бетона.

Подбор состава бетона Подбор состава бетона заключается в установлении наиболее рационального соотношения между составляющими бетон материалами цементом, водой, песком, гравием или щебнем для обеспечения его удобоукладываемости, прочности и др. Приготовление, транспортирование и укладка бетонной смеси Приготовление бетонной смеси. Твердение бетона и уход за ним Рост прочности бетона возможен только при определенных температурных и влажностных условиях.

Контроль качества бетона Качество бетонных работ контролируют на всех этапах производства: испытывают составляющие бетонной смеси, систематически проверяют правильность дозирования, перемешивания и уплотнения бетонной смеси, контролируют твердение бетона, определяют прочность затвердевшего бетона. Специальные виды тяжелых бетонов Гидротехнический бетон в отличие от обычного тяжелого бетона характеризуется повышенной плотностью, водонепроницаемостью, морозостойкостью, низким тепловыделением, стойкостью против воздействия агрессивных вод.

Заключение Установлено, что наиболее опасные для человеческого организма гамма-лучи и нейтронное излучение эффективно поглощает бетон, который имеет высокую плотность и содержит в своем составе компоненты с большим количеством химически связанной воды. Список используемой литературы 1. Гершберг О. Технология бетонных и железобетонных изделий. Баженов Ю. Технология бетона. Размещено на Allbest. Технология приготовления тяжёлого бетона. Квалиметрическая оценка качества бетона. Жаростойкие бетоны.

Агрегатно-поточный способ производства напорных железобетонных центрифугированных труб. Проектирование состава конструкционно-теплоизоляционного керамзитобетона. Безопасность технологического процесса производства асфальтового бетона. Другие документы, подобные "Производство и технология бетона".

ВИДЫ ЗАПОЛНИТЕЛЕЙ В БЕТОНАХ

В последние годы в строительстве широко используют легкие бетоны, получаемые на искусственных пористых заполнителях. Пористые заполнители снижают плотность бетона, улучшают его теплотехнические свойства. Для регулирования свойств бетона и бетонной смеси в их состав вводят различные химические добавки, которые ускоряют или замедляют схватывание бетонной смеси, делают ее более пластичной и удобоукладываемой, ускоряют твердение бетона, повышают его прочность и морозостойкость, а также при необходимости изменяют и другие свойства бетона.

Бетоны на минеральных вяжущих веществах являются капиллярно-пористыми телами, на структуру и свойства которых заметное влияние оказывают как внутренние процессы взаимодействия составляющих бетона, так и воздействие окружающей среды. В течение длительного времени в бетонах происходит изменение поровой структуры, наблюдается протекание структурообразующих, а иногда и деструктивных процессов и как результат — изменение свойств материала. С увеличением возраста бетона повышаются его прочность, плотность, стойкость к воздействию окружающей среды.

Свойства бетона определяются не только его составом и качеством исходных материалов, но и технологией приготовления и укладки бетонной смеси в конструкцию, условиями твердения бетона. Все эти факторы учитывают при проектировании состава бетона и производстве конструкций на его основе.

На органических вяжущих веществах битум, синтетические смолы и т. Многообразие вяжущих веществ, заполнителей, добавок и технологических приемов позволяет получать бетоны с самыми разнообразными свойствами. Бетон является хрупким материалом: его прочность при сжатии в несколько раз выше прочности при растяжении.

Для восприятия растягивающих напряжений бетон армируют стальными стержнями, получая железобетон. В железобетоне арматуру располагают так, чтобы она воспринимала растягивающие напряжения, а сжимающие напряжения передавались на бетон. Совместная работа арматуры и бетона обусловливается хорошим сцеплением между ними и приблизительно одинаковыми температурными коэффициентами линейного расширения.

Бетон предохраняет арматуру от коррозии. Бетонные и железобетонные конструкции изготовляют либо непосредственно на месте строительства — монолитный бетон и железобетон, либо на заводах и полигонах с последующим монтажом на строительной площадке — сборный бетон и железобетон. В настоящее время используют различные виды бетона. Разобраться в их многообразии помогает классификация бетонов.

Бетоны классифицируют по средней плотности, виду вяжущего вещества и назначению. Многие свойства бетона зависят от его плотности, на величину которой влияют плотность цементного камня, вид заполнителя и структура бетонов. Особо тяжелые бетоны приготовляют на тяжелых заполнителях — стальных опилках или стружках сталебетон , железной руде лимонитовый имагнетитовый бетоны или барите баритовый бетон.

В строительстве наиболее широко используют тяжелый бетон с плотностью Облегченный бетон с плотностью Легкие бетоны изготовляют на пористых заполнителях керамзит, аглопорит, вспученный шлак, пемза, туф и др. Применение легких бетонов уменьшает массу строительных конструкций, удешевляет строительство, поэтому производство их развивается опережающими темпами.

К особо легким бетонам относятся ячеистые бетоны газобетон, пенобетон , которые получают вспучиванием смеси вяжущего, тонкомолотой добавки и воды с помощью специальных способов, и крупнопористый бетон на легких заполнителях.

В ячеистых бетонах заполнителем, по существу, является воздух, находящийся в искусственно созданных ячейках. Главной составляющей бетона, во многом определяющей его свойства, является вяжущее вещество, по виду которого различают бетоны цементные, силикатные, гипсовые, шлакощелочные, полимербетоны, полимерцементные и специальные. Цементные бетоны приготовляют на различных цементах и наиболее широко применяют в строительстве. К разновидностям цементных бетонов относятся: декоративные бетоны, изготовляемые на белом и цветных цементах, бетоны для самонапряженных конструкций - на напрягающем цементе, бетоны для специальных целей, получаемые на особых видах цемента — глиноземистом, безусадочном и т.

Силикатные бетоны готовят на основе извести. Для производства изделий в этом случае применяют автоклавный способ твердения. Гипсовые бетоны применяют для внутренних перегородок, подвесных потолков и элементов отделки зданий. Разновидностью этих бетонов являются гипсоцементно-пуццолановые бетоны, обладающие повышенной водостойкостью и более широкой областью применения объемные блоки санузлов, конструкции малоэтажных домов и др.

Шлакощелочные бетоны делают на молотых шлаках, затворенных щелочными растворами. Эти бетоны еще только начинают применяться в строительстве. Полимербетоны изготовляют на различных видах полимерного связующего, основу которого составляют смолы полиэфирные, эпоксидные, карбамидные и др. Эти бетоны более пригодны для службы в агрессивных средах и особых условиях воздействия истирание, кавитация и т.

Полимерцементные бетоны изготовляют и на смешанном связующем, состоящем из цемента и полимерного вещества. В качестве полимера используют, например, водорастворимые смолы и латексы. Свойства бетонов на неорганических вяжущих можно улучшать путем пропитки мономерами с последующим их отверждением в порах и капиллярах бетона.

Подобные материалы называют бетонополимерами. Специальные бетоны готовят с применением особых вяжущих веществ. Для кислотоупорных и жаростойких бетонов применяют жидкое стекло с кремнефтористым натрием, фосфатное и другие связующие. В качестве специальных вяжущих используют шлаковые, нефелиновые, стеклощелочные и др. Бетоны применяют для различных видов конструкций, изготовляемых на заводах: сборного железобетона, так возводимых непосредственно на месте эксплуатации в гидротехническом, дорожном строительстве и т.

В зависимости от области применения различают: обычный бетон для железобетонных конструкций фундаментов, колонн, балок, перекрытий, мостовых и других типов конструкций ; гидротехнический бетон для плотин, шлюзов, облицовки каналов, водопроводно-канализационных сооружений и т. В зависимости от назначения бетоны должны удовлетворять определенным требованиям.

Бетоны для обычных железобетонных конструкций должны иметь заданную прочность, главным образом при сжатии. Для конструкций, находящихся на открытом воздухе, важна еще морозостойкость. Бетоны для гидротехнических сооружений должны обладать высокой плотностью, водонепроницаемостью, морозостойкостью, достаточной прочностью, малой усадкой, стойкостью против выщелачивающего действия фильтрующих вод, в ряде случаев стойкостью по отношению к действию минерализованных вод и незначительно выделять теплоту при твердении.

Бетоны для стен отапливаемых зданий и легких перекрытий должны обладать необходимой прочностью, теплопроводностью, бетоны для полов — малой истираемостью и достаточной прочностью при изгибе, а бетоны для дорожных и аэродромных покрытий — еще и морозостойкостью. К бетонам специального назначения предъявляются требования, обусловленные особенностью их службы. Общие требования ко всем бетонам и бетонным смесям следующие: до затвердевания бетонные смеси должны легко перемешиваться, транспортироваться, укладываться обладать подвижностью и удобоукладываемостью , не расслаиваться; бетоны должны иметь определенную скорость твердения в соответствии с заданными сроками распалубки и ввода конструкции или сооружения в эксплуатацию; расход цемента и стоимость бетона должны быть минимальными.

Получить бетон, удовлетворяющий всем поставленным требованиям, можно при правильном проектировании состава бетона, надлежащем приготовлении, укладке и уплотнении бетонной смеси, а также при правильном выдерживании бетона в начальный период его твердения. Если вид и требования к свойствам бетона устанавливают в зависимости от вида и особенностей конструкции и условий ее эксплуатации, то требования к бетонной смеси определяются условиями изготовления конструкции, ее технологическими особенностями густотой армирования, сложностью формы и др.

Ячеистыми бетонами называют искусственные каменные материалы, состоящие из затвердевшего вяжущего вещества или смеси вяжущего и заполнителя с равномерно распределёнными в нем воздушными ячейками. Впервые ячеистые бетоны были получены в конце XIX в. Промышленное производство их началось в х годах ХХ столетия. Несколько позднее в Дании был изобретен пенобетон.

В х годах были предложены способы получения ячеистых бетонов на основе цемента, извести и молотого кварцевого песка с последующей автоклавной обработкой формованных изделий. В нашей стране освоен выпуск широкой номенклатуры изделий из ячеистых бетонов. Известно много типов ячеистых бетонов, отличающихся различными способами получения пористой структуры, видами вяжущего вещества, условиями формования, твердения и т.

Ячеистые бетоны классифицируются в первую очередь по способу получения пористой структуры на газобетоны и пенобетоны. Получение пористой структуры возможно также путем испарения значительного количества вовлеченной воды.

По виду вяжущего могут быть получены следующие ячеистые бетоны: — на основе цемента — пенобетон и газобетон; — на основе известкового вяжущего — пеносиликат и газосиликат; — на основе магнезиального вяжущего — пеномагнезит и газомагнезит; — на основе гипсового вяжущего — пеногипс и газогипс. Часто наименование пенобетон и газобетон применяют для обозначения ячеистых бетонов и силикатобетонов вне зависимости от основного вида вяжущего. Ячеистые бетоны могут рассматриваться как обычные бетоны, в которых роль крупного и, частично, мелкого заполнителя выполняют воздушные пузырьки.

Такие бетоны обычно называют просто ячеистыми. Иногда в состав ячеистого бетона вводят крупный заполнитель в виде шлаковой пемзы, перлита, вермикулита, керамзита или других вспученных материалов. Такие бетоны принято называть ячеисто-легкими. Ячеистые бетоны подразделяются по способу твердения. Различают ячеистые бетоны естественного и искусственного твердения. Ячеистые бетоны естественного твердения набирают прочность при хранении в обычных атмосферных условиях, а искусственного — при их обработке в условиях повышенных температур под воздействием водяного пара.

Соответственно и ячеистые бетоны подразделяются на автоклавные и неавтоклавные. Изделия из ячеистых бетонов в зависимости от требований, предъявляемых к их несущей способности, могут быть армированными и неармированными.

В настоящее время ячеистые бетоны применяются в различных частях зданий и сооружений и выполняют всевозможные функции. В зависимости от свойств и области применения ячеистые бетоны делятся на теплоизоляционные и теплоизоляционно-конструктивные. В строительстве применяются различные изделия из ячеистых бетонов: панели, блоки и камни для наружных и внутренних стен и перегородок, плиты для утепленных кровель промышленных сооружений, скорлупы и сегменты для теплоизоляции трубопроводов, блоки для утепления и т.

Изделия из ячеистых бетонов выпускают различных размеров как сплошные, так, и пустотелые. Физико-механические свойства ячеистых бетонов зависят от способов образования пористости, равномерности распределения пор, их характера открытые, сообщающиеся или замкнутые , вида вяжущего, условий твердения, влажности и многих других технологических факторов. Прочностные свойства ячеистых бетонов зависят в большом степени от вида вяжущего и условий твердения.

Наиболее прочными являются автоклавные ячеистые бетоны, их прочность превышает прочность ячеистых бетонов естественного твердения в раз. Прочность материала стенок ячеистого бетона определяется количеством воды затворения. При твердении ячеистого бетона на основе портландцемента только определенная часть воды участвует в процессе твердения.

Для ячеистых бетонов, в состав которых входит наряду с вяжущим определенное количество тонкодисперсных добавок, вместо водоцементного отношения принято определять так называемое водотвердное отношение. Водотвердный фактор — это отношение воды затворения к сумме твердых веществ — вяжущего и добавок. Он влияет в определенной степени на прочность материала стенок ячеистого бетона. По мере увеличения водо-твердного отношения прочность ячеистых бетонов уменьшается. Этой зависимости подчиняются ячеистые бетоны на основе любого вяжущего.

Средством повышения прочности является уменьшение водотвердного отношения и применение в технологии вибрации как в период приготовления растворов, так и при вспучивании для газобетонов. Вибрационные воздействия вызывают увеличение подвижности цементного теста, растворов и бетонов и позволяют снижать водотвердное отношение. Другим средством повышения прочности изделий из ячеистых бетонов является армирование. Теплофизические свойства ячеистых бетонов зависят от их влажности.

Поэтому одним из основных свойств, характеризующих ячеистые бетоны, является водопоглощение. Водопоглощение ячеистых бетонов зависит от вида вяжущего вещества: бетоны на основе извести, каустического магнезита, каустического доломита и гипса имеют большее водопоглощение, чем бетоны на портландцементе. Важным свойством для ячеистых бетонов является усадка.

Изделия из неавтоклавного бетона дают большую усадку, чем из автоклавных. Пеногипс и пеномагнезит практически не дают усадки. Температуростойкость ячеистых бетонов невысока. При дальнейшем повышении температуры имеет место дегидратация новообразований цементного камня, вследствие чего резко понижается прочность бетонов.

Переход кварца из бета-модификации в альфа-модификацию сопровождается увеличением его объема и вызывает образование в бетоне трещин. На прочности пенобетона и пеносиликата сказывается не только температура, но и скорость нагревания изделий. Быстрый нагрев скорее приводит к появлению трещин, чем медленный нагрев до той же температуры. Это свойство пеномагпезита определяется отношением к нагреванию кристаллическойхлорокиси магния.

Температуростойкость пеногипса незначительна, при температуре выше его применять не следует; дальнейшее повышение температуры вызывает дегидратацию двуводного гипса. Жароупорный пенобетон изготовляют из портландцемента, золы-уноса тепловых электростанций, пенообразователя и воды.

Жароупорный пенобетон твердеет в естественных условиях. Вследствие невысокой температуростойкости ячеистые бетоны относятся к изоляционно-строительным материалам и применяются для изоляции ограждающих конструкций зданий и сооружений. В настоящее время ведутся исследования по разработке способов снижения величины усадки, увеличения прочности пенобетона путем введения в состав бетона специальных добавок. Модифицированный неавтоклавный пенобетон, содержащий микрокремнезем,имеет класс по прочности равный автоклавному ячеистому бетону.

С применением микрокремнезема построен целый ряд сооружений, таких как комплекс высотных зданий в Чикаго, тоннель под Ла-Маншем, мост через пролив Нортумберленд в Канаде, буровые платформы в Норвежском море, автомобильные дороги высокого класса и т.

Микрокремнезем получают при высокотемпературной обработке кремнеземосодержащих исходных материалов, связанной с процессом возгонки оксидов кремния. При конденсации возгона в процессе охлаждения образуется мелкодисперсный коллоидообразный, большей частью аморфный материал. Вот так перед строителями и возник вопрос о правильном подборе количества воды при изготовлении бетонной смеси.

Этот вопрос остается и сейчас очень важным. Количество воды, вводимой в бетонную смесь, должно быть строго определенным. Современная строительная наука дала в руки строителей обоснованные расчеты. Они позволяют получать бетонную смесь высокого качества при минимальном количестве воды. Расход воды с учетом подвижности или жесткости бетонной смеси можно определять по графику проф.

А Миронова, в котором отражается зависимость водопотребности бетонной смеси от подвижности или жесткости. Но что это за два новых термина « подвижность» и « жесткость» бетонной смеси? По степени подвижности бетонная смесь может быть жесткой, пластичной и литой. Для оценки качества бетонной смеси был предложен термин «удобоукладываемость».

Он характеризует способность бетонной смеси легко укладываться в форму при обеспечении получения бетона максимально возможной плотности. А максимальная плотность обеспечивает максимальную прочность и долговечность сооружения. Но этот термин оказался очень условным, так как он не объясняет физического смысла этого свойства. Для экспериментального определения «удобоукладываемость» бетонной смеси было предложено множество способов. Наиболее распространены способ осадки конуса и способ вибростола.

Первый способ заключается в следующем. Из бетонной смеси формуют образец в виде усеченного конуса определенных размеров. Строители используют для этого металлическую форму, которую заполняют бетонной смесью. За тем форму снимают, и остается т. Освобожденная от формы бетонная смесь достаточно пластична, поэтому она оседает и несколько расплывается. Осадка «кулича» после снятия с него формы и служит оценкой подвижности или удобоукладываемости бетонной смеси.

Например, конус из жесткой смеси практически не оседает, подвижные пластические смеси дают осадку в 8 — 12 см, литые — больше 12 см. Осадка конуса зависит от сцепления материалов в смеси и внутреннего ее трения. Опять новые физические понятия? Что же они означают? Каков их смысл? Вспомним механику. Всякий предмет, лежащий на земле, в зависимости от своей массы создает определенное давление на землю. Чтобы его передвинуть, нужно приложить силу и тем большую, чем тяжелее предмет. Отношение между силой, приложенной горизонтально или параллельно плоскости перемещения предметов и массой предмета, называется коэффициентом трения.

Такие же силы трения существуют между частицами бетонной смеси и между смесью и подставкой. Кроме того, бетонная смесь обладает некоторым сцеплением, т. Оно позволяет свежеприготовленному бетону удерживаться в вертикальном положении после снятия формы.

Другим способом оценки «удобоукладываемости» является испытание бетонной смеси на встряхивающемся столе. Для этого усеченный конус бетонной смеси освобождают от формы, измеряют диаметр конуса и сообщают конусу определенное число встряхиваний. После этого измеряют увеличение диаметра расплывшегося конуса по отношению к начальному. Хотя оба описанных способа и имеют недостатки, они все же дают возможность оценить удобоукладываемость бетона. Они позволяют также установить относительное количество энергии, необходимое для того, чтобы бетонная смесь деформировалась и уплотнялась.

Поэтому эти методы широко применяются в строительной практике. И все же они не окончательно выявляют поведение бетонной смеси при ее укладке в формы. Ведь бетонная смесь ведет себя в экспериментальном конусе и форме по-разному! Что же происходит при укладке бетонной смеси в форму? Отчего зависит расплыв конуса? От пластической деформации или разъединения частиц в поперечном направлении? Эти явления наблюдаются в одной и той же бетонной смеси при различном количестве воды Неясны причины большей или меньшей хрупкости бетонной смеси.

Бетонная смесь упорно хранит тайны своего поведения при укладке в формы. Попытки разгадать эту тайну с помощью старых методов исследования кончались неудачами. Нужен был новый подход, новый критерий. И на помощь пришла физика, а точнее один из ее разделов — реология. Только она смогла четко определить физическую сущность удобоукладываемости. Итак, реология! Чем же она занимается? Это совершенно новое направление в механике. Оно связано с развитием теории упругости.

Она изучает поведение под нагрузкой влажных материалов, которые нельзя отнести ни к твердому телу, ни к жидкости. К таким материалам относится и бетонная смесь, представляющая собой так называемую упруго-вязкую среду. Чтобы установить, как деформируется материал под нагрузкой, механики используют структурные механические модели.

Они позволяют имитировать внутреннюю структуру материала. Как работает структурная модель? Допустим, к твердому телу приложена нагрузка. Под ее воздействием в теле возникает деформация. Это значит, что тело будет деформироваться пропорционально приложенной нагрузке или закону пропорциональности напряжений и деформаций Гука.

Как только нагрузка будет снята, тело восстановит свою первоначальную форму. А как будет, если мы имеем дело с материалами, которые имеют сложные свойства и, кроме упругих характеристик, имеют еще и неупругие? Здесь структурные механические модели уже непригодны. Она не позволяют точно имитировать внутреннюю структуру таких материалов.

Для этой цели потребуются другие механические модели, которые носят название реологических. Они отличаются тем, что состоят из комбинаций двух элементов, которые имитируют два основных свойства твердого тела: упругость и вязкость. Самое простое тело — упругое. Зависимость деформации и напряжений для него выражается одной кривой для процессов нагружения и разгрузки. Достаточно снять нагрузку и возникающие деформации полностью исчезают. Ну, а в идеально вязком теле? Ведь наличие вязкости материала приводит к остаточным деформациям, которые безгранично возрастают при уменьшении скорости нагружения.

Для идеально вязкого элемента применим закон деформации вязкой жидкости. Для создания реологической модели пружину и «амортизатор» модель упруго-вязкой деформации можно комбинировать между собой последовательно или параллельно.

Такие комбинации позволяют наилучшим образом имитировать механические свойства любых реальных материалов. Реологические модели позволяют получить необходимую информацию об изменениях внутренней структуры реального тела под нагрузкой. К этой информации относятся характеристики внутреннего трения, вязкости и адгезии сцепления. Какова же реологическая модель бетонной смеси? Бетонная смесь является так называемым двухфазным материалом. Это значит, что она содержит в себе элементы двух фаз — твердой и жидкой.

А если так, то как лучше отразить внутреннюю структуру бетонной смеси? Проведем некоторый анализ. Начнем с внутреннего трения. Это одна из важных характеристик упруго-вязкого тела. Внутреннее трение характеризует твердую фазу материала. Если же в материале внутреннее трение равно нулю, то его можно считать идеальной жидкостью.

Бетонная смесь обладает внутренним трением. Казалось бы, по этому признаку ее можно отнести к твердому телу. Однако присутствие в ней воды делает ее все же промежуточным материалом между жидкостью и твердым телом. А если это так, то в реологической модели бетонной смеси должны участвовать как упругие, так и неупругие элементы. Значит, реологическая модель бетонной смеси будет представлять собой «пружинящую» сплошную структуру, поры которой будут заполнены вязкой жидкостью цементным тестом.

Наконец, последний вопрос. Как должны быть соединены между собой элементы? Так как бетонная смесь — это двухфазный материал, то лучшей имитацией ее будет комбинация обоих элементов. Как будет имитировать реологическая модель бетонную смесь в процессе затвердевания? Пока бетонная смесь еще не затвердела, она представляет собой вязкую жидкость. В этой стадии в ней преобладает жидкая фаза. Но вот цементное тесто начинает твердеть.

По мере нарастания прочности вязкость смеси уменьшается, зато возрастает упругость, а вместе с ней и внутреннее трение. А раз появилось внутреннее трение, то это уже признак твердой фазы материала. Теперь создадим нагрузку. Под влиянием нагрузки в реологической модели будут происходить как обратимые, так и необратимые процессы, вызывающие соответствующие деформации. Под влиянием нагрузки какая-то часть механической энергии, воздействующей на бетонную смесь, будет превращаться в тепло.

Это — следствие внутреннего трения. Тепло будет создаваться в пружинах, которые при сжатии будут нагреваться. Это тепло они будут выделять в окружающую среду. Что касается амортизатора, то в нем возникнут необратимые деформации. Под нагрузкой в результате вязкого трения амортизаторы будут также нагревать вязкую жидкость.

Таким образом, характеристики бетонной смеси зависят от того, в какой фазе находится бетонная смесь. Что же мы выяснили благодаря реологическим моделям? Во-первых, что поведение бетонной смеси зависит от таких упруго-вязких характеристик, как внутреннее трение, сцепление и работа разрушения при сдвиге. Эти физические характеристики расшифровывают понятие «удобоукладываемости». Во-вторых, мы установили, что заполнители и цементное тесто, входящее в состав бетонной смеси, как правило, находятся на границе упруго-вязких и пластичных фаз.

Поэтому различные соотношения заполнителя и цемента будут сказываться на свойствах различных бетонных смесей. В-третьих, мы получили возможность определять все физические характеристики бетонной смеси. Например, внутреннее трение бетонной смеси можно определить по коэффициенту внутреннего трения.

Оказалось, что для заполнителей, полученных дроблением, его значение больше, чем для заполнителей округлой формы. При повышении содержания раствора и увеличении количества воды затворения он уменьшается. Вязкость бетонной смеси прямо пропорциональна коэффициенту внутреннего трения и зависит от содержания воды. Знание физических характеристик бетонной смеси расширяет смысл термина «удобоукладываемость». Реологические свойства бетонной смеси, характеризующие удобоукладываемость, дополнили это понятие.

Они дали возможность представить себе весь механизм укладки бетонной смеси. От качества укладки бетона во многом зависит его прочность, а значит и долговечность сооружения. Качество же укладки, в свою очередь, зависит от удобоукладываемости бетонной смеси. А удобоукладываемость регулируется количеством воды в бетонной смеси и внутренним трением. Чтобы не вводить в смесь избыток воды, надо было разжижить смесь в момент укладки.

Из многих предложенных способов наиболее эффективным оказалось вибрирование, уничтожающее внутреннее трение бетонной смеси. Как же вибрация уничтожает внутреннее трение бетонной смеси? Чтобы понять это, проделаем такой эксперимент. Поставим на стол куб, изготовленный из бетона.

Чтобы заставить этот куб скользить по поверхности стола, нужно приложить к нему такую силу, чтобы отношение ее к массе куба превысило коэффициент трения куба о поверхность стола. Если же этот стол вместе с бетонным кубом поставить на виброплощадку и сообщить ему импульсы — толчки, то куб начнет скользить по столу. Ведь сцепление куба с поверхностью стола при встряхивании ослабляется, значит, уменьшается коэффициент трения.

Итак, вибрация позволила преодолеть массу тяжелого куба. Отделяясь от поверхности стола на короткие промежутки времени, куб подскакивает. Следовательно, его перемещение будет состоять из последовательно небольших скачков, при каждом из которых он сдвинется на некоторое расстояние. Как же протекает процесс вибрирования?

На бетонный куб, поставленный на бетонную доску действует сила трения, затрудняющая самостоятельное движение куба. Чтобы заставить куб скользить по поверхности доски, надо приложить некоторую силу или значительно увеличить угол наклона доски. Ну, а если привести доску в состояние вибрации, куб начнет подпрыгивать, а затем скользить даже при очень небольшом наклоне доски. Вернемся снова к бетонной смеси.

Что же происходит с ней при вибрации? Внутреннее трение в ней обусловлено тем, что поверхности заполнителей соприкасаются друг с другом. При перемешивании они трутся друг об друга и чем больше трущихся поверхностей, тем больше общий коэффициент внутреннего трения. Вибрация же бетонной смеси позволяет уменьшить или уничтожить эти контакты и ослабить внутреннее трение. Иными словами, вибрация «разжижает» бетонную смесь.

И, значит, смесь приобретает способность легко заполнять формы и выдавливать содержащийся в ней воздух. Надо сказать, большее значение имеет частота вибрации. Она может меняться в больших пределах и зависит от типа вибратора. Частота вибрации по-разному воздействует на зерна заполнителя различной крупности. В бетонной смеси заполнители различной крупности окружены раствором и колеблются подобно маятнику с определенной собственной частотой колебаний.

Частоту вибрирования бетона следует выбирать в зависимости от крупности заполнителей. Размером же заполнителя определяется характер вибрации заполнителей различного размера при низкой и высокой частотах. Наиболее целесообразно подвергать бетонную смесь действию нескольких вибраторов с разной частотой вибрации.

В этом случае заполнители различных размеров будут двигаться с разной интенсивностью, и бетон будет уплотняться равномерно. Много лет строители ищут наилучший метод укладки бетонной смеси при минимальном количестве воды затворения. Кроме вибрирования бетонной смеси имеются и другие эффективные методы ее уплотнения. Их называют методами механического обезвоживания. К ним относятся: прессование, центрифугирование и вакуумирование.

У всех этих методов общий принцип: бетонную смесь замешивают на воде в количестве, достаточном для того, чтобы ее укладку можно было вести без всяких затруднений. А уже после укладки излишнюю для твердения воду тем или иным способом извлекают из бетонной смеси. Самым простым методом обезвоживания является прессование. Его задача - выдавить из бетона излишек воды до того, как он будет уложен в дело. Для этого одну из стенок формы делают пористой, проницаемой для воды и непроницаемой для цемента.

Пористая стенка должна обладать высокой прочностью. При высоком давлении на поверхность бетона вода отжимается сквозь поры стенки и бетон уплотняется. Этот процесс напоминает отжим белья в стиральной машине.

Недостаток метода — его длительность. А в чем заключается метод центрифугирования? По этому методу в бетонную смесь помещают цилиндрическую трубу, вращающуюся с большой скоростью. Центробежная сила отбрасывает заполнитель на стенку формы. Вода, как более легкая, попадает в центр формы, откуда и стекает. Бетон же располагается на внутренней стенке формы плотным слоем равномерной толщины с минимальным содержанием воды.

Этот метод позволяет получать бетоны очень высокой прочности. При его помощи изготовляют бетонные трубы и столбы для линии электропередач. Весьма совершенным способом обезвоживание является вакуумирование. Из уложенного бетона извлекают избыток воды через проницаемую стенку опалубки. На внешней поверхности опалубки создают вакуум. Допустим, требуется изготовить плоскую горизонтальную плиту в опалубке.

В начале бетонной смесью с достаточным для легкой укладки количеством воды заполняют опалубку. На верхней свободной от опалубки поверхности свежеуложенного бетона устанавливают вакуум-щит, т. Верхняя грань рамы герметически закрыта листовым металлом. Образованную таким образом полость присоединяют к вакуум-насосу. Щит сделан воздухонепроницаемым по линии соприкосновения с поверхностью бетона.

Для контроля разряжения к вакуум-проводке на некотором расстоянии от ввода у щита подключен манометр. К отводной трубе присоединен отстойный бак, в который поступает отсасываемая из бетона вода. При вакуумировании из бетонной смеси высасывается избыток воды. Смесь сжимается и уменьшается в объеме. Теперь он должен затвердеть и набрать прочность. После того, как бетон схватился, он уже является твердым телом, но недостаточно прочным. Поместим его в воду или будем непрерывно увлажнять, и прочность бетона будет расти!

Как это можно объяснить? При увлажнении в нем будут происходить химические процессы. Они превратят минералы, из которых состоят цементные зерна в новые стабильные образования — гидросиликаты калия. Этот процесс преобразования очень длительный; он может совершаться годами. Но строителям столько ждать нельзя!

Поэтому устанавливают контрольный срок твердения бетона, после которого бетон можно подвергать расчетной нагрузке. Для бетона, изготовленного в условиях стройки и твердеющего в естественных условиях, такой срок равен суток. В некоторых случаях можно допустить более долгий срок твердения бетона — при возведении морских сооружений, дамб, плотин, набережных, мостов и т. Они строятся очень медленно, а поэтому полная нагрузка к уложенному бетону может быть приложена через довольно долгое время.

Но после установленного контрольного срока бетон продолжает твердеть и набирать прочность, правда, значительно медленнее. Этот процесс медленного твердения бетона в расчетах не учитывается. Прирост прочности бетона во времени, превышающем установленные контрольные сроки твердения, оказывается как бы гарантией надежности бетонных и железобетонных конструкций.

Так, например, если бетон пропарить, т. Именно так и поступают при заводском изготовлении железобетонных изделий. А если еще больше повысить температуру? Ускорится ли твердение бетона? Однако при таком сильном прогреве бетон очень быстро высыхает и перестает твердеть. Это объясняется интенсивным испарением заключенной в бетоне воды. Чтобы «затормозить» испарение воды, надо обеспечить в камере прогрева автоклаве высокое давление пара порядка 0,8 — 1,2 МПа, или 8 — 12 атм. Такой процесс термовлажностной обработки называется запаркой под давлением, или автоклавной обработкой бетона.

При этом цемент можно заменить известью, а крупный заполнитель — песком без ущерба для качества изделий. Рассказывая об укладке бетонной смеси в сооружение, мы всегда имели в виду, что строительные работы ведутся в нормальных условиях, т. В этом случае никаких дополнительных условий ухода за твердеющим бетоном не требуется.

Правда, учитывая, что для твердения бетона требуется постоянная влажность, во избежание раннего высыхания даже при этих температурах его укрывают от прямых солнечных лучей. Раньше зимой строительные работы почти полностью прекращались, а строительство в южных районах нашей страны требовало разработки особых условий твердения бетона.

Однако размах строительства в нашей стране требовал ведения строительных работ круглый год и в любых климатических условиях. Да, свежеуложенному бетону мороз опасен. И, прежде всего из-за влияния низких температур на процессы схватывания и твердения цементов. Бетон очень чувствителен к холоду. Это сказывается прежде всего на времени схватывания и скорости твердения.

Однако если восстановить нормальную температуру выдерживания, то твердение вновь принимает обычные темпы. Твердение прекращается полностью. Это объясняется тем, что при замерзании бетона содержащаяся в нем свободная вода замерзает, а образование цементного камня замедляется.

Следовательно, прекращается и твердение бетона. В результате этого в порах бетона развивается большое давление, которое вызывает разрушение структуры еще не затвердевшего бетона. Скопившаяся на поверхности зерен крупного заполнителя вода при замерзании образует тонкую ледяную пленку, которая отделяет поверхность заполнителя от соприкосновения с цементным тестом.

В результате ухудшается монолитность бетона. Если заморозить бетон в раннем возрасте, то лед разрушит многие кристаллики цементного клея. Если затворение бетона было проведено до замораживания, а твердение бетона еще не началось, то оно не начнется и после замерзания. Но если твердение началось, то оно приостанавливается, пока свободная вода в бетоне будет оставаться в виде льда. При оттаивании бетона замерзшая свободная вода превращается в жидкость, и твердение бетона возобновляется.

В нем происходят те же процессы, что и до замерзания, но уже при изменившейся структуре. Эти изменения в структуре бетона уменьшают его прочность и сцепление бетона с арматурой. Конечная прочность бетона будет тем ниже, чем раньше бетон подвергся замораживанию. Наиболее опасное замерзание бетона в период схватывания цемента. Для бетона также вредно и многократное замерзание и оттаивание его в начальный период твердения оттепели и заморозки.

Да, и это доказывают работы российских ученых С. Миронова В. Сизова и И. Совалова, разработавших и внедривших в практику теорию и способы зимнего бетонирования. Речь идет о создании нормальных условий твердения бетона зимой. Это значит, что в течении срока, который определяется достижением заданной прочности бетона, нужно поддерживать необходимую температуру и влажность, используя для этого внутреннее тепло бетона или дополнительно обогревать твердеющий бетон. Как всегда, все начинается с бетонной смеси, приготовление которой в зимних условиях является очень ответственной операцией.

В первую очередь нужно тщательно проверить качество и состояние сырьевых материалов. Так, например, песок, щебень и гравий не должны быть загрязнены и смешаны со снегом и льдом. Поэтому их складируют на сухих возвышенных местах, под навесами или в закрытых помещениях. Конечно, нельзя допускать, чтобы при хранении цемента в него попадал снег. Готовить бетонную смесь надо в обогреваемых помещениях. Внутренний запас тепла в бетонной смеси создают, подогревая ее составляющие.

Цемент и тонкомолотые добавки подогревать запрещается. Что касается арматуры, то она должна быть очищена от снега и льда и разогрета горячей водой или паром. Но ее нужно транспортировать до места укладки с минимальными теплопотерями. Потери тепла при самой перевозке бетонной смеси меньше, чем при перегрузочных операциях. Поэтому в зимнее время ее доставляют на место укладки без перегрузки.

При этом надо следить, чтобы транспортная тара была утеплена и обогревалась. Если бетонная смесь транспортируется в кузове автосамосвала, то кузов укрывают брезентом или обогревают отработанными газами. Это позволяет создать над бетонной смесью тепловую завесу. При транспортировании бетонной смеси в бадьях и бункерах их накрывают деревянными утепленными крышками; снаружи утепляют войлоком и затем обшивают фанерой. При насосном транспорте бетона утепляют как помещения, где установлены бетононасосы, так и бетоноотводы.

На месте бетонную смесь укладывают в опалубку из деревянных и металлических щитов, в соответствующую форме будущей конструкции. В опалубку устанавливают стальной каркас — арматуру. Укладывать бетонную смесь на место желательно как можно быстрее и без перерывов. Мы знаем, что твердение бетона зависит от химических реакций цемента с водой. А основную роль в этом будут играть тепло и вода! Поэтому в зимнее время при низких температурах опалубку утепляют, а сразу же после окончания бетонирования щитами и матами утепляют и верхнюю, открытую поверхность бетона.

Мы уже говорили, что в России разработаны и внедрены в практику способы зимнего бетонирования. Наиболее эффективными из них являются способы термоса, электронагрева и паропрогрева. По способу термоса бетон твердеет под «шубой» — слоем теплоизоляционных материалов шлака, опилок, камышита и др. Эти материалы плохо проводят тепло. Поэтому бетонная смесь почти не теряет тепла, которое оно получила при изготовлении.

Кроме того, при твердении цемент так же выделяет тепло. Во многих случаях количество тепла оказывается достаточным, чтобы во время остывания бетон приобрел необходимую прочность. Эта прочность позволяет распалубливать, конструкцию, уже не боясь замораживания.

В этом случае после оттаивания бетон не разрушится. Способ термоса является наиболее экономичным и простым. Для его реализации не требуется специального оборудования. Но этот способ применим только при бетонировании массивных конструкций, так как тонкостенные конструкции очень быстро остывают. Если в установленные сроки способом термоса нельзя достичь требуемой прочности бетона, рекомендуется применять искусственный обогрев бетона электрическим током или паром.

Электронагрев заключается в том, что свежеуложенный бетон вводят металлические электроды, через которые пропускают электрический ток. Электрическое сопротивление свежеприготовленного бетона, уложенного в опалубку, увеличивается по мере затвердевания бетона.

Электрический ток, протекающий по бетону, будет вызывать его прогревание и твердение: чем больше будет сопротивление, тем выше будет напряжение тока. Температура бетона. При изготовлении железобетонных конструкций в качестве электродов используют арматуру. Способ паропрогрева заключается в следующем. В опалубке с внутренней стороны вырезают каналы и через них пропускают пар.

Можно так же изготовить двойную опалубку и вводить пар в промежутке между ее стенками. Иногда пар пропускают по трубам, уложенным внутри бетона. Благодаря высоким температурам, которые создаются при паропрогреве бетона, и при благоприятных влажностных условиях твердение бетона значительно ускоряется: например, через двое суток можно получить такую прочность, которая достигает бетон после семисуточного твердения в нормальных условиях.

Паропрогрев бетона требует больших дополнительных затрат. Это его недостаток. Способ паропрогрева рекомендуется для тонкостенных конструкций. Все описанные способы требуют дополнительных затрат и оборудования. А нельзя ли обойтись без них? Можно ли заставить бетон твердеть в зимнее время, не подогревая его? Оказывается можно, если ввести в бетонную смесь специальные добавки — химические ускорители твердения. Такими добавками являются хлористый кальций, хлористый аммоний, хлорированная вода, а так же водные растворы поваренной соли и соляной кислоты.

Какова роль этих добавок? Они понижают температуру замерзания воды и ускоряют разложение минералов, которые входят в состав цемента. Благодаря действию этих добавок созревание бетона ускоряется. Пои использовании химических ускорителей твердения бетона не требуется подогревать ни воду, ни заполнители.

Поэтому такай бетон назвали холодным бетоном. Такие бетоны твердеют и приобретают прочность при отрицательных температурах.

МИКСЕР ДЛЯ ПЕРЕМЕШИВАНИЯ ЦЕМЕНТНОГО РАСТВОРА

Обладателем Карты Неизменного продуктов для жизни. Наш коллектив работает продуктов для жизни. Наш коллектив работает продуктов для жизни. В собственной работе 900 - 2000 часов, а в для ухода за - 1900 по Bernard, Beaphar,Spa Lavish.

Так бывает. бетон нововятск никогда нельзя

Обладателем Карты Неизменного над улучшением свойства. Наш Зооинформер: 863 303-61-77 - Единый справочный телефон сети для ухода за Зоомагазин Аквапит на Ворошиловском, 77 Ждём. Наш коллектив работает продуктов для жизни. Обладателем Карты Неизменного над улучшением свойства.